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Comparing the Wigner function of harmonic oscillators with classical phase-space distributions, it becomes
evident that the minimum distance of a given state with negative Wigner function to one with a positive Wigner
function (classical) is a natural measure of non-classicality. By combining Bochners theorem with semi-de�nite
programming we present a method that can strictly bound this quantity by using a �nite number of measurements
of just two quadratures. That is to say, non-classicality is directly measured, using much less than tomographic
knowledge, and at the same time with fully certi�ed error bar s.
To demonstrate the potential of our method we show an application to data from an experiment preparing optical
modes in non-classical states, giving rise to a tight bound on the negativity.

Preliminaries

Some notation:
� Phase-space variables x i and pi are encoded in � =

(x1; : : : ; xn; p1; : : : ; pn). Commutation relations between
the corresponding canonical operators are

[R̂i ; R̂j ] = {�� ij with � =

"
0 1 n

� 1 n 0

#

:

� Similar to the characteristic function of a probability den-
sity f (x) � 0,

R
f (x)dx = 1, the characteristic function of

a quantum state (described through its Wigner function
W : R

2n ! R ) can be de�ned as

� (� ) =
Z

W(z)e{ � �� �zdz:

� A function � is said to be � -positive , iff 8m 2 N and 8� 2
R

m� 2n the matrix

M (� )
kl = � (� k � � l) e{� � k�� �� l=2

is Hermitian and positive semi-de�nite.

(Quantum) Bochner's Theorem

Characteristic functions � (� ) are exactly those functions ful-
�lling [1]

1. � (0) = 1,

2. � is continuous at the origin, and

3. � is � -positive.
Special cases: � describes a classical probability density
(� = 0) or a quantum state (� = 1).

Consequence: Hierarchy of Constraints

Given a function � : R

2n ! C on n bosonic modes, ful�lling
the �rst two criteria of Bochner's theorem. It describes a
� classical state , i.e. its Wigner function is a classical prob-

ability distribution, iff � is 0-positive.

� non-classical state , in the sense of having a negative
Wigner function, iff � is 1-positive but not 0-positive

� entangled state , so even more non-classical, iff � is 1-
positive but � A (referring to the � describing %̂after partial
transpositon on sub-system A, pA 7! � pA) is not.

Negativity of the Wigner function

Denote by � 1 � : : : � � m the eigenvectors of M (� ) for a
given set of test-vectors � i .
De�ne the Wigner function negativity by

� (%̂) = min
!̂ 2C

jj %̂� !̂ jj1:

Then,
j� 1j
m

� � (%̂)

Operational meaning: distinguishability from a positive
state [2]: pe(%̂1; %̂2) = 1

2 � 1
4jj %̂1 � %̂2jj1.

Relaxation towards experimental application

Each modi�cation is a relaxation towards making M (0) more
“positive” (i.e., bounding the real negativity from below).
� Relax the 3rd condition of � -positivity to a �nite number of

phase-space points � i .

� Pick � i from a square lattice.

� � is known only for a �xed number of lattice points ~� i due
to measurements: � i = � (~� i ).

� Our choice: only measurements in the x̂ and p̂-
quadratures , giving rise to the knowledge of � on the
axes.

Bounding the negativity

With � known for a �nite set of points (up to errors di ), there
are free parameters left (� at the remaining lattice points).
The task is to �nd the worst case, so

Maximise � 1 over all free values of �

This can be solved ef�ciently using a semide�nite program
(SDP),

minimise �
subject to j� i � � ( ~� i )j � di

M (0) + � 1 m � 0
M (1) � 0

�
m

�
j� 1j
m

� � (%̂)

is a certi�ed bound to the state's Wigner
function negativity .

Recipe: single mode 1-photon state

1. Measure x- and p-marginal distributions Q(x) and P(p).
Here: theoretical state (j0ih0j + 9j1ih1j)=10

2. Determine points of � on the dual lattice,

� (0; � 2) =
Z

Q(x)e� � 2xdx � (� 1; 0) =
Z

P(x)e� 1xdx:

Here: 25 points per quadrature.

With deviations due to measurement and Fourier-
transform: di = 10� 3.

3. Draw random test-vectors � i (here: 100) and construct
M (0) and M (1). Solve the SDP, yielding values of a “worst-
case” characteristic function.

Results:

� Negativity: 0:0411(maximum that Bochner's theorem with
SDP can achieve for j1ih1j: 0:123)

� Minimum error probability: 0:4897compared with 0:4693

� Reconstruction of the “worst-case” Wigner function in
comparison with the theoretical one:

A real-world example

1. Measure marginal distributions (1.8�105 points were
measured in Copenhagen [3]). The completely dephased
state will be used as a bound (local oscillator phase
scanned over whole range).
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2. Find values of � . Due to rotational symmetry of the de-
phased state, all lattice points are occupied. Errors due to
measurements and Fourier-transform between 0:24� 10� 2

and 2:7 � 10� 2.

3. Construct M (0) and M (1) by drawing 250 test-vectors at
random.

Results:

� Bound to the negativity:

1-norm distance to closest state with positive Wigner
function:

� (%̂) � 6:36� 10� 3

� The reconstructed Wigner function:

� Value of the reconstructed Wigner function at the origin:
W(0; 0) � � 0:059compared to � 0:070[3].
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