Directly measuring the Wigner function negativity
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Comparing the Wigner function of harmonic oscillators with classical phase-space distributions, it becomes
evident that the minimum distance of a given state with negative Wigner function to one with a positive Wigner
function (classical) i1s a natural measure of non-classicality. By combining Bochners theorem with semi-de nite
programming we present a method that can strictly bound this quantity by using a nite number of measurements
of just two quadratures. That is to say, non-classicality is directly measured, using much less than tomographic
knowledge, and at the same time with fully certi ed error bar s.
To demonstrate the potential of our method we show an application to data from an experiment preparing optical
modes In non-classical states, giving rise to a tight bound on the negativity.

Preliminaries

Some notation:
Phase-space variables x; and p; are encoded in =
(X1, 0 X P o pn). Commutation relations between
the corresponding canonical operators are
¥ #

Similar to thegcharacteristic function of a probability den-
sityf (x) O, f(x)dx =1,the characteristic function of
a guantum state (described through its Wigner function
W : 21 )canbe de ned as

Z

()= W(ée Zdz:

A function Is said to be -positive ,iff8m2 and8 2
M 2N the matrix

My'= (ke x 12

IS Hermitian and positive semi-de nite.

Bounding the negativity

With  known for a nite set of points (up to errors d), there
are free parameters left ( at the remaining lattice points).
The task is to nd the worst case, so

Maximise 1 over all free values of

This can be solved ef ciently using a semide nite program
(SDP),

minimise
subjectto | j (7)] di
MO+ 0
M@ 0
J 1
- = (%

IS a certied bound to the state's Wigner
function negativity

(Quantum) Bochner's Theorem

Characteristic functions ( ) are exactly those functions ful-
lling [1]

1. (0) =1,

2. Is continuous at the origin, and

3. IS -positive.
Special cases: describes a classical probability density
( =0)oraquantum state ( =1).

Consequence: Hierarchy of Constraints

Given a function an | on n bosonic modes, ful lling
the rst two criteria of Bochner's theorem. It describes a
classical state , I.e. its Wigner function Is a classical prob-
ability distribution, iff Is O-positive.
non-classical state , in the sense of having a negative
Wigner function, iff is 1-positive but not O-positive

entangled state , so even more non-classical, iff Is 1-
positive but A (referring to the describing %after partial
transpositon on sub-system A, pa 7! pa) IS not.

Negativity of the Wigner function

Denote by 1 m the eigenvectors of M) for a
given set of test-vectors ;.
De ne the Wigner function negativity by

=min||% M"1:
(% nin 1

Then,

LY (@

m

Operational meaning: distinguishability from a positive
state [2]: pe(%;%) = 5 Zi% %ii1

Relaxation towards experimental application

Each modi cation is a relaxation towards making M (© more

“positive” (i.e., bounding the real negativity from below).
Relax the 3" condition of -positivity to a nite number of
phase-space points .

Pick ; from a square lattice.

IS known only for a xed number of lattice points 75 due
to measurements: ;= (7).

Our choice: only measurements in the R and p-
guadratures , giving rise to the knowledge of on the
axes.

Recipe: single mode 1-photon state

1. Measure x- and p-marginal distributions Q(x) and P (p).
Here: theoretical state (JOhQj + 9j1h1))=10

2. Determine points of on the dual lattice,
Z Z

0; 5)= Q(x)e 2dx (1;0)= P(X)e ¥dx:

Here: 25 points per quadrature.

With deviations due to measurement and Fourier-
transform: d; = 10 3.

3. Draw random test-vectors ; (here: 100) and construct
M (9 and M (1), Solve the SDP, yielding values of a “worst-
case” characteristic function.

Results:

Negativity: 0:.0411(maximum that Bochner's theorem with
SDP can achieve for j1hlj: 0:123

Minimum error probability: 0:4897compared with 0:4693

Reconstruction of the “worst-case” Wigner function in
comparison with the theoretical one:

A real-world example

1. Measure marginal distributions (1.8 10° points were
measured in Copenhagen [3]). The completely dephased
state will be used as a bound (local oscillator phase
scanned over whole range).
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2. Find values of . Due to rotational symmetry of the de-
phased state, all lattice points are occupied. Errors due to
measurements and Fourier-transform between 0:24 10 2
and 27 10 2.

3. Construct M ©) and M) by drawing 250 test-vectors at
random.

Results:
Bound to the negativity:

1-norm distance to closest state with positive Wigner
function:

(% 636 10 3

The reconstructed Wigner function:

Value of the reconstructed Wigner function at the origin:
W (0; 0) 0:059compared to 0:070[3].
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