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We address the question of how many maximally entangled photon pairs are needed to build up cluster states
for quantum computing using the toolbox of linear optics. As the needed gates in dual-rail encoding are nec-
essarily probabilistic with known optimal success probability, this question amounts to finding the optimal
strategy for building up cluster states, from the perspective of classical control. We develop a notion of classical
strategies and present rigorous statements on the ultimate maximal and minimal uses of resources of the glo-
bally optimal strategy. We find that this strategy—being also the most robust with respect to decoherence—
gives rise to an advantage of already more than an order of magnitude in the number of maximally entangled
pairs when building chains with an expected length of L=40, compared with other legitimate strategies. For
two-dimensional cluster states, we present a first scheme achieving the optimal quadratic asymptotic scaling.
This analysis shows that the choice of appropriate classical control leads to a significant reduction in resource
consumption. © 2007 Optical Society of America
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. INTRODUCTION
o actually experimentally realize a fully fletched univer-
al quantum computer constitutes a tremendous chal-
enge. Among the promising candidates for possible archi-
ectures are the ones entirely relying on optical systems.
tate manipulation can then be realized using sources of
ingle photons or entangled pairs, arrays of linear optical
lements, and photon detectors.1–7 Some of the advan-
ages of such an approach are obvious: accurate state ma-
ipulation is available using linear optical elements, and
hotons are comparably robust with respect to decoher-
nce. In turn, there is a price to pay when avoiding the
xploitation of any physical nonlinearities and effectively
ealizing them via measurements: owing to the small suc-
ess probability of elementary gates,8–11 a significant
verhead in optical elements and additional photons is re-
uired to render the overall protocol near-deterministic.
Consequently, one of the primary goals of theoretical

ork toward the realization of a linear optical quantum
omputer is to find ways to reduce the necessary overhead
n resources. For the seminal scheme of Ref. 1, this over-
ead cannot be reduced by simply building better elemen-
ary sign-shift gates.8 Schemes based on the model of one-
ay computation12,13 point toward a reduction of resource

onsumption by orders of magnitude,3,4 a perspective that
as attracted considerable interest in recent
esearch.2–4,14–19 This development reminds one of an in-
erse Moore’s law of the known minimally required re-
ources for linear optical computing as a function of time.
he central ingredient to these realizations is cluster
tates12,13 or graph states,20–22 which can be built up from
0740-3224/07/020184-5/$15.00 © 2
aximally entangled photon pairs (4-qubit cluster states
ave already been experimentally prepared23,24). Fusion
ates of types I and II have been applied to the task of
reating cluster states,4,25,26 derived from parity-check
ates7 and partial Bell projections. However, these gates
re inherently probabilistic, in that in each step the ex-
eriment can either succeed or fail with the outcome be-
ng known.

In fact, it is not difficult to show that the maximal prob-
bility of success of a quantum gate realizing a fusion of
wo dual-rail encoded linear cluster states is ps=1/2, by
elating this to the optimal success probability of a Bell
easurement with linear optics.27,28 When preparing lin-

ar cluster states from EPR (maximally entangled) pairs,
he only freedom we have for improvement is to identify
he optimal classical strategy for fusing cluster-state
ieces. As the possible patterns of failure and success in-
rease exponentially, an overwhelming wealth of situa-
ions can potentially occur. Deciding how to optimally re-
ct to any of these situations constitutes a hard problem
ndeed but may have tremendous implications on the
mount of resources needed. A similar situation occurs
hen two-dimensional (2-D) cluster states are prepared.
In this work we will address the latter question; i.e.,

hat is the optimal strategy to cope with the probabilistic
ature of fusion gates in constructing one-dimensional
1-D) and 2-D cluster states? Although previous research
as more strongly focused on saving resources by devising

ngenious ways of implementing quantum gates, it is
ound in the present paper that choosing an optimal clas-
ical control strategy can cut the needed entanglement by
007 Optical Society of America



f
b
m

2
D
W
e
c
e
r
w
T
o
=
=
s
s
f
l
a
b
s
t
t
f
i
b

s
p
a
u
p

t
s
e
s

Q
E

c

r
d
g
fi
p
T

S
c
s
w
c
q

r
q

t
s
Q
c
a
o
a
F
v

s
f
s

f
�

p
t
i
p
�
a
g

l

M
−
d
w

s
�

l
c
i
W
w
c
p
o
s
t

Kieling et al. Vol. 24, No. 2 /February 2007 /J. Opt. Soc. Am. B 185
urther orders of magnitude. In this way, we can also
ound the resources that any scheme within the above-
entioned set of rules would require.

. CLASSICAL STRATEGIES IN ONE
IMENSION
e begin the specific investigation with the 1-D case. Lin-

ar cluster states can be pictured as chains of qubits,
haracterized by their length l given in the number of
dges. Maximally entangled qubit pairs (EPR pairs) cor-
espond to chains with a single edge. By a configuration
e mean a set of chains of specific individual lengths.
ype-I fusion4 allows for operations involving end qubits
f two pieces (lengths l1 and l2), resulting in success �ps
1/2� in a single piece of length l1+ l2 or in failure �pf
1/2� in two pieces of lengths l1−1 and l2−1. The process
tarts with a collection of EPR pairs and ends when only a
ingle piece is left. A strategy decides which chains to
use, given a configuration. It is assessed by the expected
ength of the final cluster. The vast majority of strategies
llow for no simple description and can be specified solely
y a look-up table listing all configurations with the re-
pective proposed action. Since the number of configura-
ions scales as O�N1/2 exp���2N /3�1/2�� (this derives from
he sum of all integer partitions of k�N, cf. Ref. 29) as a
unction of the total number of edges N, a single strategy
s already an extremely complex object, and any form of
rute-force optimization is completely out of reach.
However, there is one simple strategy that might rea-

onably be conjectured to be optimal. Indeed, we face a
robabilistic process, and we lose entangled resources on
verage. Hence, it seems advantageous to quickly build
p long clusters by always fusing the largest available
ieces together. This strategy we call GREED:

• GREED: Always fuse the largest available pieces. In
urn, one can also be conservative and always fuse the
mallest available pieces. This apparently inferior strat-
gy, dubbed MODESTY, will not deliver long chains in early
teps.

• MODESTY: Always fuse the smallest available pieces.
uite surprisingly, it will turn out that not only is MOD-

STY vastly more effective than GREED but even extremely
lose to the globally optimal strategy.

Let us further formalize these notions. A (pure) configu-
ation consisting of ni pieces of length li, i=1, . . . ,c, will be
enoted Cª �l1

�n1� , . . . , lc
�nc��. The total number of edges is

iven by N�C�ª�inili, and CNª �C �N�C��N� is the con-
guration space for N�N. A mixed configuration is a
robability distribution p defined on the elements of CN.
he expected total length of a mixed configuration is

	L
�p� ª �
C

p�C�N�C�.

trategies act naturally as stochastic matrices30 on mixed
onfigurations by acting on every pure configuration in its
upport independently. Repeated application of a strategy
ill eventually lead to a probability distribution pfinal over

onfigurations �l�1�� with only a single chain each. The
uantity Q̃�C�ª 	L
�p � is the expected yield of C with
final
espect to the given strategy. Of central importance is the
uality

Q�C� ª sup Q̃�C�,

he best possible expected length that can be achieved
tarting from C by means of any strategy. We abbreviate
��1�N��� by Q�N�. Note that the quantum nature of the

luster states does not enter the consideration. Q displays
smooth behavior when regarded as a function on either

nly even or only odd values of N. The respective graphs
ppear to be slightly displaced with respect to each other.
or simplicity, we generally restrict our attention to even
alues.

Observation 1 (lower bound for globally optimal
trategy). Starting with N EPR pairs and using type-I
usion gates, the globally optimal strategy yields a cluster
tate of expected length

Q�N� � Q̃�N0� + ��N − N0�

or all N�N0. The constants are N0=92, Q̃�N0�=16.1061,
=0.153336 (known as rational numbers31).
For N�2N0, a desktop computer can symbolically com-

ute the performance of MODESTY Q̃�N��Q�N�. One finds
hat the above relation is valid in this case. For N�2N0
nput pairs we adopt the following strategy. First, the in-
ut is divided into k blocks of length ni, where N0�ni
2N0 and MODESTY is used to convert any such block into
single chain; second, the resulting chains are fused to-

ether.
If C is a configuration consisting of only two chains of

ength l1� l2, one easily finds that

Q�C� = l1 + l2 − 2�
i=0

l2

2−i � l1 + l2 − 2.

ore generally, it can be shown28 that Q�N���iQ�ni�
2�k−1�. Now set �ª �Q̃�N0�−2� /N0. From the computed
ata we know that �Q̃�nj�−2� /ni�� for all i. Imposing
ithout loss of generality n1=N0, we see that

Q�N� � Q̃�N0� + �
i=2

k

ni

Q̃�ni� − 2

ni

� Q̃�N0� + ��
i=2

k

ni = Q̃�N0� + ��N − N0�.

Observation 2 (upper bound to globally optimal
trategy). The quality is bounded from above by Q�N�
N /5+2.
Although the performance of any strategy delivers a

ower bound for the optimal one, giving an upper bound is
onsiderably harder. The following paragraphs show key
deas of a rigorous proof (details can be found in Ref. 28).

e proceed in three steps. Every attempted fusion fails
ith probability of one half and destroys two edges in the

ase of failure. One is thus led to assume that the ex-
ected number of lost edges equals the expected number
f fusion attempts T�C� a strategy undertakes acting on
ome configuration C. However, care must be taken, as
here are two kinds of average involved: on the one hand
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he “global” average of the amount of edges lost in the en-
ire process; on the other hand the “local” average of the
mount of edges expected to be lost in the next step. In
ef. 28 we consider the problem carefully and find that

he intuitive reasoning can be rigorously justified. Be-
ause the average final length Q�C� is nothing other than
he initial number of edges N�C� minus the expected
umber of losses, we have Q�C�=N�C�−T�C�. Hence any

ower bound on T will supply an upper bound for Q�N�.
Second, we pass to a greatly simplified model—dubbed

he razor model—from which we can extract bounds for T.
his is done by introducing a quite radical new rule: after
very step all chains will be cut to a maximum length of 2.
t turns out that there exists a strategy in the razor model
hat terminates using fewer fusion attempts on average
R than the optimal strategy for the full model. Intu-

tively, this is the case as the cutting operation increases
he probability for chains to be completely destroyed ow-
ng to failed fusions. However, making this argument pre-
ise is greatly impeded by the fact that one needs to com-
are strategies that are defined on different models.
ndeed, given the optimal strategy of the full setup, there
s no direct way of turning it into a strategy for the razor

odel. We solve the problem as follows. Let C be a con-
guration and C� be the result of removing a single edge

rom one chain in C. In Ref. 28 we derive the estimate
�C��Q�C���Q�C�−1. Combining the findings of the

ast paragraph with N�C��=N�C�−1, we arrive at

Q�C�� � Q�C� − 1 ⇔ N�C� − 1 − T�C�� � N�C� − T�C� − 1

nd hence T�C���T�C�. Thus removing a single edge from
chain decreases the expected number of fusion attempts
erformed by the optimal strategy. As the passage to the
azor model can be perceived as a repeated removal of
ingle edges, we can use these observations to prove T
TR.
In a last step we further simplify the problem in order

o obtain a lower bound for TR. A configuration C of the
azor model is specified by two natural numbers �l1 , l2�
iving the number of chains of lengths 1 and 2, respec-
ively. In each step a strategy has three options: try to
use (a) two short chains, (b) two long ones, or (c) a long
hain and a short chain. Consider the choice (a). In the
ase of failure the chains are destroyed, and so C�C
aF where aFª �−2,0�. An analogous relation holds for
uccessful fusions where aSª �−2,1�, and similar rules
an be formulated for options (b) and (c). We are thus
aturally led to interpret the problem as a random walk
n a 2-D lattice. As initially there are N single-edge
hains in the configuration, the walk starts at �N ,0�. It
ill end when there is no more than one chain left, so at
ositions (1,0), (0,1), (0,0). So how many steps does a
robabilistic process require—on average—to cover that
istance? If a strategy decides at some point in the walk
o choose action (a), then on average the configuration will
ove by āª �aS+aF� /2= �−2,1/2� on the lattice. Denote

y 	a
 the expected number of times a given strategy opts
or action (a) when acting no �N ,0�. Define b̄,	b
, c̄, 	c

imilarly. From the discussion it is intuitive (and can be
ade precise28) that any strategy fulfills
	a
ā + 	b
b̄ + 	c
c̄ � �− N + 1,1�.

s the expected number of fusion attempts TR equals
a
+ 	b
+ 	c
, one can obtain a lower bound by solving the
inear program: minimize TR subject to the constraints
iven above. By passing to the dual problem,32 one can
nd an analytic solution that gives rise to the estimate
tated in Observation 2.

Observation 3 (symbolic calculation of optimal
ength). The globally optimal strategy can be computed
ith an effort of O��CN � �log �CN � �5�.
We have implemented a backtracking algorithm that in

ffect recursively computes the quality of all configura-
ions up to some arbitrary total length. The results are
tored in a look-up table, which causes memory
onsumption—rather than time—to limit the practical
pplicability of the program. This explains the dominat-
ng factor �CN� in the estimate of the computational effort:
very configuration has to be examined at least once. A
loser analysis28 reveals the poly-log correction. Note
hat, even though the effort scales exponentially in N, the
lgorithm is vastly more efficient than a naïve approach,
hich would enumerate all strategies to select the opti-
al one by directly comparing their performances.
The algorithm has been implemented using the com-

uter algebra system MATHEMATICA and employed to de-
ive in closed form an optimal strategy for all configura-
ions in C46.31 A desktop computer is capable of
erforming the derivation in a few hours. Starting with
l�N��, MODESTY turns out to be the optimal strategy for all

�10. For configurations containing more edges, slight
eviations from MODESTY can be advantageous. However,
he difference relative to Q�N� is smaller than 1.1�10−3

or N�46.
Observation 4 (asymptotic performance of

REED). Starting with N EPR pairs and fusing them with
ype-1 fusion under GREED result in an expected length of

Q̃�N� = �2N/��1/2 + O�1�.

It is interesting to see how MODESTY compares with the
symptotic performance of the equally reasonable strat-
gy GREED. Starting from �1�N��, only pieces of length 1
nd one single piece of length l�1 may occur during the
usion process. Hence, the support of the probability dis-
ribution is ˆC= �l�1� ,1�m�� :m=0,1, . . . ; l=2,3, . . . ; l+m
N‰� �l�m� :m�N�. The implementation of GREED gives

ise to a Markov chain on this set with a reflecting
oundary.30 From this, one may determine the asymptotic
ehavior of the expected length by using a Gaussian ap-
roximation. This means the linear chain grows as a
quare root in the number of available pairs N rather
han linearly.

Observation 5 (comparison of GREED and the op-
imal strategy). For realizing an expected length of 40 in
linear cluster state, the resources N required by GREED

nd the optimal strategy already differ by more than an
rder of magnitude.

Results for the expected length using symbolic alge-
raic calculations are shown in Fig. 1, for the strategies
ODESTY; for the globally optimal strategy, GREED; and

he lower bound of Observation 1, almost identical with
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he curve of MODESTY. The difference between the perfor-
ance of MODESTY and GREED is enormous: hence, it does
atter indeed, concerning resource consumption, what

lassical strategy one adopts. When one prepares the ap-
ropriate graph state for a single, unconnected Controlled
OT (CNOT) gate12,13,20–22 with Ps=0.99, linear clusters

f lengths (15, 12, 15) are required. The difference in the
umber of EPR pairs used between GREED and the opti-
al strategy (resulting in these lengths on average) is al-
ost a factor of 4. In a full scheme, the overhead for a re-

iable connection would additionally have to be included.
Recall that the expected length equals the total number

f edges in the original configuration minus the expected
umber of losses. The latter number, in turn, is propor-
ional to the number of fusion attempts on average.
herefore, the optimum strategy is also the one employ-

ng the smallest number of fusion steps and is hence also
he most robust with respect to decoherence processes as-
ociated with operation of these gates. Note that the pre-
ented analysis, needless to say, can also be applied to
ther physical architectures in which one has to cope with
probabilistic character of fusion gates, such as in matter
ubits coupled via optical systems.33,34

. SCALING IN TWO DIMENSIONS
bservation 6 (optimal scaling for 2-D cluster

tates). An n�n cluster state can be prepared using
�n2� EPR pairs—employing x measurements and type-II

usion—such that the overall success probability satisfies

lim
n→�

Ps�n� → 1.

We now turn to 2D structures, to be built by weaving
luster chains. Using the type-II fusion gate4 in succes-
ion to an x measurement (consuming two edges) delivers
n success �ps=1/2� a vertex incorporating both linear
lusters, hence an elementary 2-D structure. In the case
f failure (losing two edges without splitting the original
hains), the scheme described in Ref. 4 can be used for
ubsequent attempts, consuming 3+2f edges, with f being
he number of failures. With these tools, we can again
onsider classical strategies as in the 1-D case, rather
han exploit local unitaries’ graph isomorphisms (e.g.,

ig. 1. Expected lengths for the globally optimal strategy, for
ODESTY (in this plot indistinguishable from the globally optimal

trategy), for a lower bound (with N0=46), for GREED, for its
symptotic performance, and for the upper bound, as functions of
ven N.
ef. 18). Obviously, no such scheme can result in more
conomical asymptotics than O�n2� in the use of en-
angled resources. In any preparation scheme, however,
verhead has to be taken into account to ensure a near-
eterministic outcome, as a single failure may endanger
he already generated 2-D cluster.

Finding the overall success probability Ps�n� in a closed
orm is impeded by the fact that failures on earlier verti-
es influence the number of resources left and therefore
he number of possible failures on later vertices. We are
ble to decouple these problems by considering a weaving
attern as depicted in Fig. 2. Let us denote with m the
verhead in each of the horizontal linear cluster states of
ength l=n+m and take a single linear cluster state of
ength L=n�l+1�. We will show that a choice of n�an
m for a�2 will be an appropriate choice for the scaling
f the overhead.

To start with the more formal part, on the basis of the
bove prescription, we can write the probability Ps�n� of
ucceeding to prepare an n�n cluster state as Ps�n�
�s�n�n. Here,

�s�n� =
1

2an�
k=n

an �an

k � = 1 − F�n − 1,an,1/2�

s the success probability of fusing a single chain of length
=an into the cluster, with F denoting the standard cu-
ulative distribution function of the binomial distribu-

ion. Since 2n−2�an for all n, we can hence bound �s�n�
rom below by means of Hoeffding’s inequality.35 This
ives rise to the lower bound

�s�n� � 1 − exp�− 2�an/2 − n + 1�2/�an��.

s a�2, one can show that lim infn���s�n�n�1, and
ence

lim
n→�

Ps�n� = lim
n→�

�s�n�n = 1,

hich is the argument to be shown. It is remarkable that,
or 2�a�1, then limn→�Ps�n�=0, and the preparation
ill fail, asymptotically even with certainty. This argu-
ent proves that a 2-D cluster state can indeed be pre-

ared using O�n2� EPR pairs, making use of probabilistic
uantum gates. This may be considered good news, as it
roves that the natural scaling in the resources can be
et with negligible error.

. SUMMARY AND OUTLOOK
n this work, we have addressed the question of how to
uild optical linear and 2-D cluster states from the per-
pective of classical strategies. We have introduced tools

ig. 2. Possible pattern of how to arrange n+1 linear clusters
threads) to weave a carpet of width n. Fusion operations have to
e applied at the solid circles along the long linear cluster state.
rrows mark free ends.
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o assess the performance of several protocols, including
he globally optimal strategy. Further, we have shown
hat 2-D cluster states can be generated with resource re-
uirements of O�n2�, which is the most economical scal-
ng. It has hence turned out that the mere classical con-
rol indeed does matter and that differences in resource
equirements of orders of magnitude can be expected, de-
ending on the chosen strategy. The presented techniques
ay, after all, be expected to provide powerful tools to as-

ess and develop techniques for building redundancy en-
oding resource states25,26 or to prepare states rendering
inear optical schemes fault tolerant.36–38
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